
Birzeit University - Faculty of Engineering & Technology
Electrical & Computer Engineering Department - ENCS313
Linux laboratory

Experiment #11

Learning & Programming Perl

Part II

0.1 Introduction

Perl (Practical Extraction and Reporting Language) was developed by Larry Wall in 1987 as
a general-purpose Unix scripting language to make report processing easier. Since then, it has
undergone many changes and revisions. The latest major stable revision of Perl 5 is 5.18, released
in May 20131.

Perl is designed to assist the programmer with common tasks that are probably too heavy or
too portability-sensitive for the shell, and yet too weird or short-lived or complicated to code
in C or some other UNIX glue language23.4. The Perl language borrows features from other
programming languages including C, shell scripting (sh), AWK, and sed. They provide powerful
text processing facilities without the arbitrary data-length limits of many contemporary Unix
tools, facilitating easy manipulation of text files. Perl 5 gained widespread popularity in the
late 1990s as a CGI scripting language, in part due to its parsing abilities.

The current experiment intends to present to students the perl programming language. First
the language syntax will be presented: Scalar Data, Arrays and List Data, Control Structures,
Hashes, Basic I/O, Regular Expressions (like the ones we’ve seen with shell scripting). In
addition, students will be shown how to build perl functions, how to do File and Directory
Manipulation, Process Management and how to build packages and modules (and much more).

Since all the above material seems too much to fit in one single experiment, the content on
perl will be split into 2 experiments. In the first part, we’ll go over learning how to program in
perl. In the second part, you’ll get your hands wet in programming in perl where we’ll see some
advanced topics.

It is worth mentioning that perl comes pre-installed with all Linux and Unix distributions. Perl
packages can also be installed on windows platforms. The most famous perl distributions for
windows are ActivePerl and Strawberry Perl.

0.2 Objectives

The objectives of the experiment is to learn the following:

• Perl syntax and control structures.

• Show some examples about perl scripts and get some hands on regarding perl program-
ming.

• Show some Perl functions.

• Show text processing using Perl.

1Perl: From Wikipedia, the free encyclopedia
2Randal L. Schwartz, Tom Christiansen and Larry Wall - Learning Perl, 2nd Edition
3Larry Wall, Tom Christiansen & Randal L. Schwartz - Programming Perl - 2nd Edition
4Tom Christiansen & Nathan Torkington - Perl Cookbook - 1st Edition

1

• Show how to debug Perl scripts with Perl debugger.

• Show how to create formats with Perl.

• Explain What are packages in Perl.

• Show how to build Perl modules.

0.3 File and Directory Manipulation

0.3.1 Removing a File

Files can be removed in Perl using the function unlink as follows:

unlink data.txt

The above function call will remove the file data.txt.

The unlink function can take a list of names to be unlinked as in the below example:

#!/usr/bin/perl

unlink ("data.txt","udata.txt"); # delete the 2 files data.txt and udata.txt

unlink <*.o>; # just like "rm *.o" in the shell

0.3.2 Renaming a File

Files can be renamed in Perl using the function rename as follows:

rename(‘‘data.txt’’,’’udata.txt’’); || die ‘‘Can’t rename the file’’

0.3.3 Making and Removing Directories

Perl can create a directory using the mkdir function. It takes a name for a new directory and a
mode that will affect the permissions of the created directory. Check the below example.

Example

Type the following example in a file called test create dir.pl:

#!/usr/bin/perl

mkdir ("newDir", 0777) || die "cannot mkdir gravelpit: $!";

Run the perl script as follows:

perl test create dir.pl

and check on the results you get. If you have the right permissions, the directory newDir should
be created with the assigned permissions.

Directories can be removed using the rmdir function as follows:

rmdir("newDir") || die "cannot rmdir newDir: $!";

0.4 Pattern Matching - Text Processing using Perl

Perl is powerful for text processing applications using a technique called regular expressions5.
Pattern matching is more than just searching for some set of characters in your data; its a way
of looking at data and processing that data in a manner that can be incredibly efficient and
amazingly easy to program. You’ll see a lot of common terminology we’ve seen when we handled
shell scripting in the previous experiments.

5http://work.lauralemay.com/samples/perl.html

2

0.4.1 Pattern Matching Operators and Expressions

To use pattern matching in Perl, you figure out what you want to find, you write a regular
expression to find it, and then you stick that pattern in a situation where the result of finding
(or not finding) that pattern makes sense. To construct patterns in this way, you use two
operators: the regular expression operator m// and the pattern-match operator =∼, like this:

if ($string =~ m/foo/) {

do something...

}

What that test inside the if says is: if the string contained in $string contains the pattern foo,
return true. Note that the operator =∼ is not an assignment operator, even though it looks like
one. =∼ is used exclusively for pattern matching and is called the binding operator.

Usually, the letter m is optional and the =∼ is optional as well if the default variable $ is used.
Check the below example:

Example

Type the following example in a file called test pattern 1.pl:

#!/usr/bin/perl

$_= "hello how are you";

if (m/hello/){ # You can omit the letter m as explained above

print "default variable = $_\n";

print "found hello\n";

}

Run the perl script as follows:

perl test pattern 1.pl

and check on the results you get. Notice in particular that the string hello was found in the
default variable $.

Using the i modifier ignores the case difference such as the below incomplete code:

#!/usr/bin/perl

.

.

.

if (m/hello/i){

.

.

.

}

In addition, you can match only if the string hello occurs at the start of the line as below:

.

.

.

if (m/^hello/) {

.

.

.

}

3

or occurs at the end of the line by replacing

if (m/^hello/) {

}

by

if (m/hello$/) {

}

Some tricks

The pattern /∧/ matches empty strings.

The pattern /∧$/ matches an empty line.

The pattern /∧.$/ matches lines that contain one character and one character only.

The pattern /∧..:/ matches lines that starts with two characters and a colon.

0.4.2 The split function

The split is a function that splits a string into components based on a specified delimiter, and
return a list of values. Check the below example:

Example

Type the following example in a file called test split.pl:

#!/usr/bin/perl

my $line = "23/07/2013";

($day, $month, $year) = split /\//,$line;

print "day = $day, month = $month, year = $year\n";

print "length of $line is:", length $line, "\n";

Run the perl script as follows:

perl test split.pl

and check on the results you get.

In the above example, the function split will use / as delimiter. Note that / is a special
character. To use it right, we should use \/ (precede / with a backslash).

Note as well the function length which returns the number of characters in a string.

0.4.3 Boundary matching

A word boundary is indicated using a \b escape. For example if you want to look for the string
if when it comes alone but not in a string such as difference or iffy. So \bif\b will match
only when the whole word if exists in the stringbut not when the characters i and f appear in
the middle of a word. Check the below example:

Example

Type the following example in a file called test pattern 2.pl:

#!/usr/bin/perl

4

my $str1 = "if I were king";

my $str2 = "difference";

my $str3 = "that result is iffy";

if ($str1 =~ /\bif\b/) {

print "if has been found in str1\n";

}

if ($str2 =~ /\bif\b/) {

print "if has been found in str2\n";

}

if ($str3 =~ /\bif/) {

print "if has been found in str3\n";

}

if ($str1 =~ /\bif/) {

print "if has been found in str1\n";

}

if ($str2 =~ /\bif/) {

print "if has been found in str2\n";

}

if ($str3 =~ /\bif/) {

print "if has been found in str3\n";

}

Run the perl script as follows:

perl test pattern 2.pl

and check on the results you get.

You can also search for a pattern not in a word boundary using the \B escape. With this, /\Bif/
will match only when the characters i and f occur inside a word and not at the start of a word.

Below is a list of character class codes:

Code Equivalent character class What it means

\d [0-9] Any digit

\D [∧0-9] Any character not a digit

\w [0-9a-zA-Z] Any word character

\W [∧0-9a-zA-Z] Any character not a word character

\s [\t\n\r\f] whitespace (space, tab, newline, carriage return, form feed)

\S [∧ \t\n\r\f] Any non-whitespace character

0.4.4 Matching a single character

The . (dot) matches any single character except the new line character. At least one character
should match.

5

Example

Type the following example in a file called test pattern 3.pl:

#!/usr/bin/perl

$line = "help how are you";

print "line = $line\n";

if ($line =~ /hel.p/) {

print "hel.p was found\n";

}

else {

print "hel.p was not found\n";

}

if ($line =~ /he.p/){

print "he.p was found\n";

}

else {

print "he.p was not found\n";

}

Run the perl script as follows:

perl test pattern 3.pl

and check on the results you get.

0.4.5 Matching any single character zero or one time

? (question mark) matches any character zero or one time in a string.

Example

Type the following example in a file called test pattern 4.pl:

#!/usr/bin/perl

$line = "help how are you";

print "line = $line\n";

if ($line =~ /hel?p/) {

print "hel?p was found\n";

}

else {

print "hel?p was not found\n";

}

Run the perl script as follows:

perl test pattern 4.pl

and check on the results you get.

0.4.6 Matching a single character including newline

\s is the same as the . (dot) seen above, but it includes the newline \n.

Example

6

Type the following example in a file called test pattern 5.pl

#!/usr/bin/perl

print ’\s is same as . but includes \n character’ . "\n";

$line = "hel\np how are you";

print "line = $line\n";

if ($line =~ /hel\sp/){

print ’hel\s was found’ . "\n";

}

else {

print ’hel\s was not found’ . "\n";

}

Run the perl script as follows:

perl test pattern 5.pl

and check on the results you get.

0.4.7 Matching any single character zero or more times

* (star) matches any character zero or more times in a string.

Example

Type the following example in a file called test pattern 6.pl

#!/usr/bin/perl

$line = "hello how are you";

print "line = $line\n";

if ($line =~ /hel*o/) {

print "hel*o was found\n";

}

else {

print "hel*o was not found\n";

}

Run the perl script as follows:

perl test pattern 6.pl

and check on the results you get.

0.4.8 Matching any single character one or more times

+ (plus) matches any character one or more times in a string.

Example

Type the following example in a file called test pattern 7.pl

#!/usr/bin/perl

$line = "hello how are you";

7

print "line = $line\n";

if ($line =~ /hel+o/) {

print "hel+o was found\n";

}

else {

print "hel+o was not found\n";

}

Run the perl script as follows:

perl test pattern 7.pl

and check on the results you get.

0.4.9 Matching a grouping of strings

If you are looking for two strings (e.g. this and that), you can do it as follows:

if (($in =~ /this/) || ($in =~ /that/)) {

...

}

You can group the matching as follows:

if ($in =~ /this|that/) {

...

}

or even do better as follows:

if ($in =~ /th(is|at)/) {

...

}

Below is a complete example that has been picked from the site shown in the page legend6.

Example

Type the following example in a file called numspeller2.pl

#!/usr/bin/perl -w

numberspeller: prints out word approximations of numbers

simple version, only does single-digits

$exit = ""; # whether or not to exit the script.

while ($exit ne "n") {

while () {

print ’Enter the number you want to spell(0-9): ’;

chomp($_ = <STDIN>);

if (/^\d$/) {

print "Thanks!\n";

last;

} elsif (/^$/) {

print "You didn’t enter anything.\n";

} elsif (/\D/) { # nonnummbers

6http://work.lauralemay.com/samples/perl.html

8

if (/[a-zA-z]/) { # letters

print "You can’t fool me. There are letters in there.\n";

} elsif (/^-\d/) { # negative numbers

print "That’s a negative number. Positive only, please!\n";

} elsif (/\./) { # decimals

print "That looks like it could be a floating-point number.\n";

print "I can’t spell a floating-point number. Try again.\n";

} elsif (/[\W_]/) { # other chars

print "huh? That *really* doesn’t look like a number\n";

}

} elsif ($_ > 9) {

print "Too big! 0 through 9, please.\n";

}

}

print "Number $_ is ";

/1/ && print ’one’;

/2/ && print ’two’;

/3/ && print ’three’;

/4/ && print ’four’;

/5/ && print ’five’;

/6/ && print ’six’;

/7/ && print ’seven’;

/8/ && print ’eight’;

/9/ && print ’nine’;

/0/ && print ’zero’;

print "\n";

while () {

print ’Try another number (y/n)?: ’;

chomp ($exit = <STDIN>);

$exit = lc $exit;

if ($exit =~ /^[yn]/) {

last;

}

else {

print "y or n, please\n";

}

}

}

Run the perl script as follows:

perl numberspeller.pl

and check on the results you get. Check that whenever you provide a number in the range [0 -
9], the number is converted to a string and printed out on the standard output. Try to provide
different combinations and check on the output you get.

0.5 Debugging Perl scripts - The Perl Debugger

Nobody writes perfect code on the first trial. It is thus necessary to have a debugger that helps
you go into your code line by line, examine the various variables, registers & memory locations
and make sure you’re getting the results you should.

In the previous experiments that dealt with the C-language, you encountered the gdb debugger

9

that helps you debug C-programs.

In Perl, the debugger is not a separate program as it is in the typical compiled environment like
C-language. Instead, the -d flag tells the compiler to insert source information into the parse
trees it’s about to hand off to the interpreter. That means your code must first compile correctly
for the debugger to work on it. The debugger won’t run until you have fixed all compiler errors.

You’ll find below 10 steps to debug Perl programs. These steps have been taken from a site
where the link is mentioned in the legend below7.

To understand the perl debugger commands in detail, let us create the following sample perl
program (perl debugger.pl).

Example

Type the following example in a file called perl debugger.pl

#!/usr/bin/perl -w

Script to list out the filenames (in the pwd) that contains specific pattern.

#Enabling slurp mode

$/=undef;

Function : get_pattern

Description : to get the pattern to be matched in files.

sub get_pattern

{

my $pattern;

print "Enter search string: ";

chomp ($pattern = <STDIN>);

return $pattern;

}

Function : find_files

Description : to get list of filenames that contains the input pattern.

sub find_files

{

my $pattern = shift;

my (@files,@list,$file);

using glob, obtaining the filenames,

@files = <./*>;

taking out the filenames that contains pattern.

@list = grep {

$file = $_;

open $FH,"$file";

@lines = <$FH>;

$count = grep { /$pattern/ } @lines;

$file if($count);

} @files;

return @list;

}

7http://www.thegeekstuff.com/2010/05/perl-debugger/

10

to obtain the pattern from STDIN

$pattern = get_pattern();

to find-out the list of filenames which has the input pattern.

@list = find_files($pattern);

print join "\n", @list;

0.5.1 Enter Perl Debugger

Run the Perl script as follows:

perl -d perl debugger.pl

It should promt:

DB<1>

0.5.2 View specific lines or subroutine statements using (l)

The command l takes a line number or a subroutine name. If provided with a line number, it
displays the content of that line. If given a subroutine name, it displays the lines of code that
correspond to that subroutine.

Execute the command l 10 as follows:

DB<1> l 10

It should display:

10: my $pattern;

Now execute the command l get pattern as follows:

DB<2> l get pattern

it displays the following:

11 {

12: my $pattern;

13: print "Enter search string: ";

14: $pattern = <STDIN>;

15: chomp ($pattern);

16: return $pattern;

17 }

0.5.3 Set the breakpoint on find files function using (b)

Execute the command:

DB<3> b find files

0.5.4 Set the breakpoint on specific line using (b)

Execute the command:

DB<4> b 44

0.5.5 View the breakpoints using (L)

Execute the command:

11

L

You should get the following output:

DB<5> L

perl_debugger.pl:

23: my $pattern = shift;

break if (1)

44: @list = find_files($pattern);

break if (1)

0.5.6 step by step execution using (s and n)

You can use the command n (next) or s (step) in a similar way you were used to with the gdb

debugger.

DB<5> s

main::(./perl_debugger.pl:39): $pattern = get_pattern();

DB<5> s

main::get_pattern(./perl_debugger.pl:12):

12: my $pattern;

0.5.7 Continue till next breakpoint (or line number, or subroutine) using (c)

You can use the command c to continue execution to the next breakpoint as follows:

DB<5> c

Enter search string: perl

main::find_files(./perl_debugger.pl:22):

22: my $pattern = shift;

0.5.8 Continue down to the specific line number using (c)

DB<5> c 36

main::find_files(./perl_debugger.pl:36):

36: return @list;

0.5.9 Print the value of a specific variable using (p)

You can use the command p to print the value of a variable as follows:

DB<6> p $pattern

0.5.10 Restart execution using (R) and quit using (q)

You can restart execution of your Perl script from the first instruction by using the command R

or quit the debugger by using the command q.

0.5.11 Get debug commands from the file (source)

Perl debugger can get debug commands from a file and execute them. For example, create the
file called debug cmds with the perl debug commands as follows:

c

p $pattern

q

12

For example, restart the execution of the Perl script with the debugger as follows:

perl -d perl_debugger.pl

and then type the following:

source debug_cmds

Note that the debugger commands will get executed line by line.

0.5.12 Summary of perl debugger commands

• h or h h for help page

• c to continue down from current execution till the breakpoint otherwise till the subroutine
name or line number

• p to show the values of variables

• b to place the breakpoints

• L to see the breakpoints set

• d to delete the breakpoints

• s to step into the next line execution

• n to step over the next line execution, so if next line is subroutine call, it would execute
subroutine but not descend into it for inspection

• source ‘‘file’’ to take the debug commands from the file

• l ‘‘subname’’ to see the execution statements available in a subroutine

• q to quit from the debugger mode

0.6 Formats

Perl provides the notion of a simple report writing template, called a format. A format defines
a constant part (the column headers, labels, fixed text, or whatever) and a variable part (the
current data you’re reporting)8.

Using a format consists of doing three things:

• Defining a format.

• Loading up the data to be printed into the variable portions of the format (fields).

• Invoking the format.

We’ll explain formats using a concrete example.

Examples

Type the following example in a file called test format 1.pl:

8Randal L. Schwartz, Tom Christiansen and Larry Wall - Learning Perl, 2nd Edition

13

#!/usr/bin/perl

format ADDRESSLABEL =

===============================

| @<<<<<<<<<<<<<<<<<<<<<<<<<< |

$name

| @<<<<<<<<<<<<<<<<<<<<<<<<<< |

$address

| @<<<<<<<<<<<<<<<<, @< @<<<< |

$city, $state, $zip

===============================

.

open(ADDRESSLABEL, ">labels-to-print") || die "can’t create";

open(ADDRESSES, "addresses.txt") || die "cannot open addresses";

while (<ADDRESSES>) {

chomp; # remove newline

($name, $address, $city, $state, $zip) = split(/:/);

load up the global variables

write (ADDRESSLABEL); # send the output

}

Open a text file and type down the following:

Mohammad Asmar:44 Ma3ahed Street:Ramallah:Ramallah & Bireh Municipality:P.O.Box: 14

Mervat Shaheen:3 rawda Street:Jenin:Northern Municipality:P.O.Box: 260

Stonehenge:4470 SW Hall Suite 107:Beaverton:OR:97005

Fred Flintstone:3737 Hard Rock Lane:Bedrock:OZ:999bc

Save the file as addresses.txt.

Run the Perl script as follows:

perl test format 1.pl

Open the file called labels-to-print and check on its content. That is what we call data
formatting.

In the above example, format is a keyword and ADDRESSLABEL is the name of the format. What
follows the format name is called a template. The end of the template is indicated by a line
consisting of a single dot by itself. Note that templates are sensitive to whitespaces.

The template definition contains a series of fieldlines. Each fieldline may contain fixed text
which is that will be printed out literally when the format is invoked.

0.6.1 Text Fields

Fieldlines may also contain fieldholders for variable text. If a line contains fieldholders, the
following line of the template (called the value line) dictates a series of scalar values - one per
fieldholder - that provide the values that will be plugged into the fields.

As an example, the fieldholder @<<<<<<<<<< specifies a left-justified text field with 11 characters.

If the characters following the @ are left-angle brackets (<<<<), you get a left-justified field; that
is, the value will be padded on the right with spaces if the value is shorter than the field width.
If the characters following the @ are right-angle brackets (>>>>), you get a right-justified field -
that is, if the value is too short, it gets padded on the left with spaces.

Finally, if the characters following the @ are vertical bars (||||), you get a centered field: if the

14

value is too short, it gets padded on both sides with spaces, enough on each side to make the
value mostly centered within the field.

0.6.2 Numeric Fields

Another kind of fieldholder is a fixed-precision numeric field, useful for those big financial reports.
This field also begins with @, and is followed by one or more #’s with an optional dot (indicating
a decimal point). Once again, the @ counts as one of the characters of the field. For example:

format MONEY =

Assets: @#####.## Liabilities: @#####.## Net: @#####.##

$assets, $liabilities, $assets-$liabilities

.

Examples

Type the following example in a file called test format 2.pl:

#!/usr/bin/perl

format MONEYLABEL =

Assets: @#####.## Liabilities: @#####.## Net: @#####.##

$assets, $liabilities, $assets-$liabilities

.

open(MONEYLABEL, ">money-formated") || die "can’t create";

open(MONEY, "money.txt") || die "cannot open addresses";

while (<MONEY>) {

chomp; # remove newline

($assets, $liabilities) = split(/:/);

load up the global variables

write (MONEYLABEL); # send the output

}

Open a text file and type down the following:

1.3456:2.01111

222222.345:9898

Save the file as money.txt.

Run the Perl script as follows:

perl test format 2.pl

Open the file called money-formated and check on its content.

0.7 Packages Modules and Libraries

A package is a collection of code which lives in its own namespace. As such, Perl uses packages
to partition the global namespace. Just as directories contain files, packages contain identifiers.
Every global identifier (variables, functions, file and directory handles, and formats) has two
parts: its package name and the identifier proper. These two pieces are separated from one
another with a double colon. For example, the variable $CGI::needs binmode is a global variable
named $needs binmode, which resides in package CGI.

Example

Type the following example in a file called test package 1.pl:

15

#!/usr/bin/perl

package Alpha;

my $aa = 10;

$x = "azure";

package Beta;

my $bb = 20;

$x = "blue";

package main;

print "$aa, $bb, $x, $Alpha::x, $Beta::x\n";

Run the Perl script as follows:

perl test package 1.pl

and check on the output you get. Explain the results that you get.

As you can see from the previous example, package is a compile-time declaration that sets
the default package prefix for unqualified global identifiers. This effect lasts until the end of
the current scope (a brace-enclosed block, file, or eval). The effect is also terminated by any
subsequent package statement in the same scope. All programs are in package main until they
use a package statement to change this.

0.7.1 Modules

The unit of software reuse in Perl is the module, a file that has a collection of related functions
designed to be used by other programs and library modules. Every module has a public interface,
a set of variables and functions that outsiders are encouraged to use.

The require or use statements both pull a module into your program, although their semantics
are slightly different. The keyword require loads modules at runtime, with a check to avoid
the redundant loading of a given module. The keyword use is like require, with two added
properties: compile-time loading and automatic importing.

The required file extension for a Perl module is “.pm”. The module named FileHandle would
be stored in the file FileHandle.pm. The full path to the file depends on your include path,
which is stored in the global @INC variable.

Import/Export Regulations

The following is a typical setup for a hypothetical module named Cards::Poker that demon-
strates how to manage its exports. The code goes in the file named Poker.pmwithin the directory
Cards: that is, Cards/Poker.pm. Here’s that file, with line numbers included for reference9:

1 package Cards::Poker;

2 use Exporter;

3 @ISA = (’Exporter’);

4 @EXPORT = qw(&shuffle @card_deck);

5 @card_deck = (); # initialize package global

6 sub shuffle { } # fill-in definition later

7 1; # don’t forget this

• Line 1 declares the package that the module will put its global variables and functions
in. Typically, a module first switches to a particular package so that it has its own place
for global variables and functions, one that won’t conflict with that of another program.

9Tom Christiansen & Nathan Torkington - Perl Cookbook - 1st Edition

16

This must be written exactly as the corresponding use statement will be written when the
module is loaded.

• Line 2 loads in the Exporter module, which manages your module’s public interface as
described below. Line 3 initializes the special, per-package array @ISA to contain the
word ‘‘Exporter’’. When a user says use Cards::Poker, Perl implicitly calls a special
method, Cards::Poker->import(). You don’t have an import method in your package,
but that’s OK, because the Exporter package does, and you’re inheriting from it because of
the assignment to @ISA (is a). Perl looks at the package’s @ISA for resolution of undefined
methods.

• Line 4 assigns the list (’&shuffle’, ’@card deck’) to the special, per-package array
@EXPORT. When someone imports this module, variables and functions listed in that array
are aliased into the caller’s own package. That way they don’t have to call the function
Poker::Deck::shuffle(23) after the import. They can just write shuffle(23) instead.
This won’t happen if they load Cards::Poker with require Cards::Poker; only a use

imports.

• Lines 5 and 6 set up the package global variables and functions to be exported. You’re
free to add other variables and functions to your module as well, including ones you don’t
put in the public interface via @EXPORT.

• Finally, line 7 is a simple 1, indicating the overall return value of the module. If the last
evaluated expression in the module doesn’t produce a true value, an exception will be
raised.

More keywords that you can use while building your modules are:

• $VERSION: When a module is loaded, a minimal required version number can be supplied.
If the version isn’t at least this high, the use will raise an exception.

Example

use YourModule 1.86; # If $VERSION < 1.86, fail

• @EXPORT: The array contains a list of functions and variables that will be exported into
the caller’s own namespace so they can be accessed without being fully qualified.

Example

@EXPORT = qw(F1 F2 @List);

Thus the functions F1, F2 and the array @List are exported.

• @EXPORT OK: This array contains symbols that can be imported if they’re specifically asked.

Example

@EXPORT_OK = qw(Op_Func %Table);

Then the user could load the module as follows:

use YourModule qw(Op_Func %Table F1);

To get everything in @EXPORT plus extras from @EXPORT OK, use the special :DEFAULT tag,
such as:

use YourModule qw(:DEFAULT %Table);

17

• %EXPORT TAGS: This hash is used by large modules like CGI or POSIX to create higher-
level groupings of related import symbols. Its values are references to arrays of symbol
names, all of which must be in either @EXPORT or @EXPORT OK.

Example

%EXPORT_TAGS = (

Functions => [qw(F1 F2 Op_Func)],

Variables => [qw(@List %Table)],

);

An import symbol with a leading colon means to import a whole group of symbols. Here’s
an example:

use YourModule qw(:Functions %Table);

Below is a complete example on how to write and call your own module.

Example

Type the following in a file called Foo.pm:

#!/usr/bin/perl

package Foo;

sub bar {

print "Hello $_[0]\n"

}

sub blat {

print "World $_[0]\n"

}

1; # Don’t forget the 1 which indicates the return value is TRUE

Type the following example in a file called test foo require.pl:

#!/usr/bin/perl

require Foo;

Foo::bar("a");

Foo::blat("b");

Run the perl script as follows:

perl test foo require.pl

and check on the results you get.

Type the following example in a file called test foo use.pl:

#!/usr/bin/perl

use Foo;

bar("a");

blat("b");

Run the perl script as follows:

perl test foo use.pl

18

and check on the results you get. Explain in particular why it doesn’t work.

Example

Type the following in a file called Foo complete.pm:

package Foo_complete;

require Exporter;

@ISA = qw(Exporter);

@EXPORT = qw(bar blat);

sub bar { print "Hello $_[0]\n" }

sub blat { print "World $_[0]\n" }

sub splat { print "Not $_[0]\n" } # Not exported!

1;

Type the following example in a file called test foo complete use.pl:

#!/usr/bin/perl

use Foo_complete;

bar("a");

blat("b");

splat("c");

Run the perl script as follows:

perl test foo complete use.pl

and check on the results you get. Explain why it works now for the first 2 subroutines but not
for the third subroutine.

Modules freely available

CPAN, the Comprehensive Perl Archive Network, is a gigantic repository of nearly everything
about Perl you could imagine, including source, documentation, alternate ports, and above all,
modules. Before you write a new module, check with CPAN to see whether one already exists
that does what you need. Even if one doesn’t, something close enough might give you ideas.

You can access CPAN at http://www.cpan.org. The module directory itself can be visited at
http://www.cpan.org/modules. It contains indices of all registered modules plus three conve-
nient subdirectories: by-module, by-author, and by-category. All modules are available through
each of these, but the by-category directory is probably the most useful. There you will find
directories covering specific applications areas including operating system interfaces; network-
ing, modems, and interprocess communication; database interfaces; user interfaces; interfaces to
other programming languages; authentication, security, and encryption.

0.7.2 Libraries

A library is a collection of loosely related functions designed to be used by other programs. It
lacks the rigorous semantics of a Perl module. The extension is usually .pl like any other Perl
script.

Perl libraries can be loaded by inserting the following line require lib.pl (assuming the library
name is lib.pl).

Libraries work well when used by a program, but problems can arise when libraries use one
another. Consequently, simple Perl libraries have been rendered mostly obsolete, replaced by
the more modern modules. But some programs still use libraries.

19

0.7.3 The include path for Perl modules

Perl interpreter is compiled with a specific @INC default value. To find out this value of @INC,
run the following command:

perl -e ’for (@INC) {printf "%d %s\n", $i++, $_}’

If the module you intend to use is located under one of the directories mentioned in the @INC

variable, you can use the module in your Perl scripts by including the below statement:

use myModule

If the module is installed elsewhere, you can set the environment variable PERL5LIB (if it is not
defined, PERLLIB is used) on your shell. Perl pre-pends @INC with a list of directories (colon-
separated) contained in PERL5LIB.

A third way to include modules installed in non-standard locations, you can use the -I option
when executing the following command on the shell as follows:

perl -I /my/moduledir your_script.pl

A fourth way would be to include the following line as the first line in a perl script:

#!/usr/local/bin/perl -w -I /my/moduledir

0.7.4 Preparing a Module for Distribution

If you want to prepare your module to get installed in a standard distribution format so you
can easily send your module to a friend, you can use the command h2xs as follows:

h2xs -XA -n myModule

The above will create a folder called myModule that will contain the following:

• Folder lib

• Folder t

• A file called Changes

• A file called Makefile.PL

• A file called MANIFEST

• A file called README

You can afterwards tar and gzip the folder myModule as follows:

tar cf myModule.tar myModule

gzip myModule.tar

The above commands will generate the file myModule.tar.gz that you can distribute.

Once your friends and colleagues receive your tarred and gzipped file, they can install your
module myModule by executing the below commands in sequence:

gzip -dc myModule.tar.gz | tar -xvf -

cd myModule

perl Makefile.PL

make

make install

20

Note that the above installation procedure will install the module myModule under the standard
location:

/usr/local/lib/perl5/site_perl/5.8/i386-...

The above signifies that you have root privilege.

If you don’t have root privilege, you can do the module installation under your home directory
for example by using the PREFIX compilation directive as follows:

perl Makefile.PL PREFIX=/home/user/folder LIB=/home/user/folder

Example

We’ll use for the current example the file Foo.pm that was created previously. Execute the
following commands in sequence:

cd ~

mkdir tmp

cp Foo.pm tmp/.

cd tmp

h2xs -XA -n Foo

Note that the folder Foo gets created under directory tmp. At this stage, you can tar and gzip

the folder Foo and send it to your colleagues as mentioned previously.

If you wish to install the module Foo, you can execute the following commands is sequence:

perl Makefile.PL

make

make install

If you do not have the root privilege, you can install the module Foo under folder tmp as follows:

perl Makefile.PL PREFIX=/home/user/tmp LIB=/home/user/tmp

21

